An Imaging Ammeter for High Throughput Electrochemical Research

نویسندگان

  • Reza M. Rock
  • John R. Kitchin
  • Frederick Lanni
  • James B. Miller
  • Dennis C. Prieve
چکیده

Rapid testing of electrocatalysts and corrosion resistant alloys accelerates discovery of promising new materials. Imaging amperometry, based on the deployment of colloidal particles as probes of the local current density, allows simultaneous electrochemical characterization of the entire composition space represented in a thin-film alloy "library" electrode. Previous work has shown that nanometer scale variations in particle-electrode distance for single particles in electric fields can be measured optically and translated into local current density, independent of electrical measurements. Implementation of this method to enable simultaneous measurements across non-uniform samples involves using a sparse, uniform layer of particles, which requires modification of previously existing theory and methods. Imaging individual particles for this application is infeasible at the low magnification levels needed to image an entire macroscopic (~1 square cm) sample. Mapping of electrochemical activity across the surface can be achieved nevertheless by imaging the entire electrode surface and gridding the resulting images into a mosaic of square “patch” areas 100 μm to a side, each containing 15-30 particles. The work presented in this dissertation shows that the integrated light intensity in each patch is the sum of the light scattering from all of the particles present in that patch, and that this total measured intensity can be used to infer the current density in the patch during electrochemical experiments. In addition to scaling the imaging ammeter up to ensembles of particles, the theory for translating measured particle motion to current density has been substantially improved. These improvements involve proper modeling of the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements.

High throughput electrochemical techniques are widely applied in material discovery and optimization. For many applications, the most desirable electrochemical characterization requires a three-electrode cell under potentiostat control. In high throughput screening, a material library is explored by either employing an array of such cells, or rastering a single cell over the library. To attain ...

متن کامل

Combined electrochemical surface plasmon resonance for angle spread imaging of multielement electrode arrays.

A surface plasmon resonance imaging system combined with a multielement electrode array is described. An optical system with shaping optics is used to direct a wedge of light onto a gold-coated sample. The reflected light is detected in the form of an angle-spread image of the surface, with one direction denoting a variable incident angle and the other showing a span of locations along one late...

متن کامل

Color-coded imaging of electrochromic process at single nanoparticle level

Electrochromic materials have attracted increasing attention in the field of smart devices and energy economy due to their excellent reversible chromic properties. Investigating an electrochromic process at the nano-scale is beneficial to the development of functional nano-devices exploiting chromophores. In this study, a new method for real-time imaging of an electrochromic process at the sing...

متن کامل

A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies.

An electrochemical device, which consists of electrode arrays, nanocavities, and microwells, was developed for multi-electrochemical detection with high sensitivity. A local redox cycling-based electrochemical (LRC-EC) system was used for multi-electrochemical detection and signal amplification. The LRC-EC system consists of n(2) sensors with only 2n bonding pads for external connection. The na...

متن کامل

High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting.

Combinatorial synthesis and screening for discovery of electrocatalysts has received increasing attention, particularly for energy-related technologies. High-throughput discovery strategies typically employ a fast, reliable initial screening technique that is able to identify active catalyst composition regions. Traditional electrochemical characterization via current-voltage measurements is in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015